1,715 research outputs found

    The Framework of Anglo-Soviet Commercial Relations: The British View

    Get PDF
    Considering that a majority of elderlies are non-users of computers and Internet we developed a telemonitoring system for elderly heart failure (HF) home care patients based on digital pen technology - a technology never used before by this patient group. We implemented the system in clinical use in a 13 months long study. Fourteen patients (mean/median age 84 years) with severe HF participated. They accepted the technology and performed daily reports of their health state using the digital pen and a Health Diary form. Via the system the clinicians detected all HF-related deteriorations at an early stage and thereby prevented hospital re-admissions for all patients during the study, implying improved symptom control and large cost savings

    Transport of Correlated Electrons through Disordered Chains: A Perspective on Entanglement, Conductance, and Disorder Averaging

    Full text link
    We investigate electron transport in disordered Hubbard chains contacted to macroscopic leads, via the non-equilibrium Green's functions technique. We observe a cross-over of currents and conductances at finite bias which depends on the relative strength of disorder and interactions. The finite-size scaling of the conductance is highly dependent on the interaction strength, and exponential attenuation is not always seen. We provide a proof that the Coherent Potential Approximation, a widely used method for treating disorder averages, fulfils particle conservation at finite bias with or without electron correlations. Finally, our results hint that the observed trends in conductance due to interactions and disorder also appear as signatures in the single-site entanglement entropy.Comment: 5 pages, 4 figure

    Effective bias and potentials in steady-state quantum transport: A NEGF reverse-engineering study

    Full text link
    Using non-equilibrium Green's functions combined with many-body perturbation theory, we have calculated steady-state densities and currents through short interacting chains subject to a finite electric bias. By using a steady-state reverse-engineering procedure, the effective potential and bias which reproduce such densities and currents in a non-interacting system have been determined. The role of the effective bias is characterised with the aid of the so-called exchange-correlation bias, recently introduced in a steady-state density-functional-theory formulation for partitioned systems. We find that the effective bias (or, equivalently, the exchange-correlation bias) depends strongly on the interaction strength and the length of the central (chain) region. Moreover, it is rather sensitive to the level of many-body approximation used. Our study shows the importance of the effective/exchange-correlation bias out of equilibrium, thereby offering hints on how to improve the description of density-functional-theory based approaches to quantum transport

    Partial self-consistency and analyticity in many-body perturbation theory: particle number conservation and a generalized sum rule

    Full text link
    We consider a general class of approximations which guarantees the conservation of particle number in many-body perturbation theory. To do this we extend the concept of Φ\Phi-derivability for the self-energy Σ\Sigma to a larger class of diagrammatic terms in which only some of the Green's function lines contain the fully dressed Green's function GG. We call the corresponding approximations for Σ\Sigma partially Φ\Phi-derivable. A special subclass of such approximations, which are gauge-invariant, is obtained by dressing loops in the diagrammatic expansion of Φ\Phi consistently with GG. These approximations are number conserving but do not have to fulfill other conservation laws, such as the conservation of energy and momentum. From our formalism we can easily deduce if commonly used approximations will fulfill the continuity equation, which implies particle number conservation. We further show how the concept of partial Φ\Phi-derivability plays an important role in the derivation of a generalized sum rule for the particle number, which reduces to the Luttinger-Ward theorem in the case of a homogeneous electron gas, and the Friedel sum rule in the case of the Anderson model. To do this we need to ensure that the Green's function has certain complex analytic properties, which can be guaranteed if the spectral function is positive semi-definite.The latter property can be ensured for a subset of partially Φ\Phi-derivable approximations for the self-energy, namely those that can be constructed from squares of so-called half-diagrams. In case the analytic requirements are not fulfilled we highlight a number of subtle issues related to branch cuts, pole structure and multi-valuedness. We also show that various schemes of computing the particle number are consistent for particle number conserving approximations.Comment: Minor changes, corrected typo

    A Householder-based algorithm for Hessenberg-triangular reduction

    Full text link
    The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil AλBA - \lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations regrouped and accumulated into small dense matrices which are subsequently applied using matrix multiplication routines. A non-vanishing fraction of the total flop count must nevertheless still be performed as sequences of overlapping Givens rotations alternately applied from the left and from the right. The many data dependencies associated with this computational pattern leads to inefficient use of the processor and poor scalability. In this paper, we therefore introduce a fundamentally different approach that relies entirely on (large) Householder reflectors partially accumulated into block reflectors, by using (compact) WY representations. Even though the new algorithm requires more floating point operations than the state of the art algorithm, extensive experiments on both real and synthetic data indicate that it is still competitive, even in a sequential setting. The new algorithm is conjectured to have better parallel scalability, an idea which is partially supported by early small-scale experiments using multi-threaded BLAS. The design and evaluation of a parallel formulation is future work

    Time Dependent Density Functional Theory meets Dynamical Mean Field Theory: Real-Time Dynamics for the 3D Hubbard model

    Full text link
    We introduce a new class of exchange-correlation potentials for a static and time-dependent Density Functional Theory of strongly correlated systems in 3D. The potentials are obtained via Dynamical Mean Field Theory and, for strong enough interactions, exhibit a discontinuity at half filling density, a signature of the Mott transition. For time-dependent perturbations, the dynamics is described in the adiabatic local density approximation. Results from the new scheme compare very favorably to exact ones in clusters. As an application, we study Bloch oscillations in the 3D Hubbard model.Comment: 4 pages, 3 figure

    Contour calculus for many-particle functions

    Full text link
    In non-equilibrium many-body perturbation theory, Langreth rules are an efficient way to extract real-time equations from contour ones. However, the standard rules are not applicable in cases that do not reduce to simple convolutions and multiplications. We introduce a procedure for extracting real-time equations from general multi-argument contour functions with an arbitrary number of arguments. This is done for both the standard Keldysh contour, as well as the extended contour with a vertical track that allows for general initial states. This amounts to the generalization of the standard Langreth rules to much more general situations. These rules involve multi-argument retarded functions as key ingredients, for which we derive intuitive graphical rules. We apply our diagrammatic recipe to derive Langreth rules for the so-called double triangle structure and the general vertex function, relevant for the study of vertex corrections beyond the GWGW approximation

    The Generalized Kadanoff-Baym Ansatz with Initial Correlations

    Full text link
    Within the non-equilibrium Green's function (NEGF) formalism, the Generalized Kadanoff-Baym Ansatz (GKBA) has stood out as a computationally cheap method to investigate the dynamics of interacting quantum systems driven out of equilibrium. Current implementations of the NEGF--GKBA, however, suffer from a drawback: real-time simulations require {\em noncorrelated} states as initial states. Consequently, initial correlations must be built up through an adiabatic switching of the interaction before turning on any external field, a procedure that can be numerically highly expensive. In this work, we extend the NEGF--GKBA to allow for {\em correlated} states as initial states. Our scheme makes it possible to efficiently separate the calculation of the initial state from the real-time simulation, thus paving the way for enlarging the class of systems and external drivings accessible by the already successful NEGF--GKBA. We demonstrate the accuracy of the method and its improved performance in a model donor-acceptor dyad driven out of equilibrium by an external laser pulse

    Dynaflow ™ 48, a microfluidic chip solution for increasing throughput and data quality in patch-clamp-based drug screening

    Get PDF
    Ion channels are transm embrane proteins, found in virtually all cell types throughout the human body. Ion channels underlie neural communication, memory, behavior, every movement and heartbeat, and are as such prone to cause disease if malfunctioning. Therefore ion channels are very important targets in drug discovery. The gold standard technique for obtaining information on ion channel function with high information content and temporal resolution is patch-clamp. The technique measures the minute currents originating from the movement of ions across the cellular membrane, and enables determination of the potency and efficacy of a drug. However, patch-clamp suffers from serious throughput restrictions due to its laborious nature. To address the throughput problems we have developed a microfluidic chip containing 48 microchannels for an extremely rapid, sequential delivery of a large number of completely controlled solution environments to a lifted, patch-clamped cell. In this way, throughput is increased drastically compared to classical patch-clamp perfusion set-ups, with uncompromised data quality. The 48-microchannel chip has been used for the characterization of drugs affecting ligand-gated ion channels including agonists, antagonists and positive modulators with positive effects on both throughput and data quality.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę

    CMA-Based CD and DGD Estimation in Presence of Experimental Higher Order PMD

    Get PDF
    We evaluate 3 methods for CD estimation using CMA filter tap coefficients. The performance of these methods are evaluated with respect to their accuracy and range. We also experimentally evaluate the CD estimation performance in presence of higher order PMD
    corecore